PHYSICAL REVIEW E VOLUME 55, NUMBER 6 JUNE 1997

Dynamical behavior of Lagrangian systems on Finsler manifolds
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In this paper we develop a theoretical framework devoted to a geometrical description of the behavior of
dynamical systems and their chaotic properties. The underground manifold is a Finsler space whose features
permit the description of a wide class of dynamical systems such as those with potentials depending on the
time and velocities for which the Riemannian approach is unsuitable. Another appealing feature of this more
general setting relies on its very origin: Finsler spaces arise in a direct way on imposing the invariance for time
reparametrization to a standard variational problem. A Finsler metric is a generalization of the well-known
Jacobi and Eisenhart-metrics for conservative dynamical systems. We use this geometry to derive the main
geometrical invariants and related expressions that are needed to establish the transition to chaos in very
general Lagrangian systems. In order to point out the versatility and the effectiveness of this extension of the
geometrical approach, we suggest the introduction of this formalism to some interesting dynamical systems for
which the Finsler metric is much more suitable than the Riemannian one. In particular, we present the
following: (i) an exhaustive description and numerical results for a resonant oscillator with a time-dependent
potential, (ii) an exact descriptiofwithout any approximationof the dynamics of Bianchi type-IX cosmo-
logical models, andiii) a geometrical description of the restricted three-body problem whose effective poten-
tial depends linearly on the velocities. In the first case, the numerical integration of the geodesics and geodesic
deviation equations shows that in the geometrical picture the source of the exponential instability of trajectories
relies on the mechanism of parametric resonance and does not originate from the negativity of curvature.
[S1063-651X97)05305-1

PACS numbgs): 05.45:+b, 02.40-k, 04.20.Fy

[. INTRODUCTION the Riemannian approach to chaos emerges when the dy-
namical structure differs from the “standard” one, as in the
The goal of understanding the qualitative behavior of dy-case of non-Hamiltonian systems or when there is a not
namical systems has often been pursued by studying theurely quadratic dependence on velocities or momenta. The
properties of a corresponding geodesic flow obtained by interesting aspect of the application of Finsler geometry is
suitable ‘“‘geometrization” procedur¢l]. However, while that it allows the treatment of a wider class of Lagrangian
many rigorous results concerning the global picture of thedynamical systems, such as those with potentials depending
motion have been obtained in the case of systems whosn time, with gyroscopici.e., velocity-dependehterms and
geodesic-flows involve strictly negative curvature, identify-without positive-definite kinetic energy. The Finsler metric is
ing also their statistical propertid®] there are few results a generalization of the well-known Jacobi metric, used to
for generic systems with non-negative curvature. The atreduce the motion of a conservative system to geodesic mo-
tempts made in these cageee[3,4] and references thergin tion over a conformally Euclidean manifolgB,4,6. The
have been based on the study (@kact or approximaje greater generality of the Finsler metric is due to the fact that
forms of the geodesic deviation equation, trying to establishhe metric tensor depends on velocities as well as coordinates
the link between the long-time behavior of trajectories andand, despite the drawback of having more involved expres-
some suitable averages of geometric invariants. Despite thetons for geometric invariantéhe metric is in general not
fact that these results are yet not complete and a rigoroudiagonal and the components of the connection also depend
setting is still being sought, the geometric approach is promen velocities, it is not difficult to obtain a description of the
ising, however, and deserves more attention. qualitative behavior of a generic Lagrangian system by ex-
The purpose of this paper is to illustratelso through ploring the stability of the solutions of the geodesic deviation
somerealistic physical applicationsa more general geom- equation.
etrization procedure based on the study of geodesic flows The actual starting point for this survey was the attempt
over Finsler manifolds[5]. The need of a generalization of towards a successful geometrization of Bianchi IX cosmol-
ogy, to investigate the very nature of its approach to the
singularity, the character of which has been controversial for
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namics, and more recently other geometrical approai@les PPAZ(XK ")
have been applied, essentially using the Jacobi geometry, but T oxTox T
all these are subject to conceptual and technical shortcom-
ings that do not allow completely reliable predictions
[9,10,5b)]. As shown below, the use of Finsler geometry by
passes the problems caused by the singularity in the kinetics-
energy term of the Arnowitt-Deser-Misner Hamiltonifdird],

thus removing the main source of trouble with the Jacobi Wi (s tiyy gy rk—

. X"+ X', x"x"x"*=0, 5
metric. Moreover, it is just in the framework of general rela- Vil ) ®
tivistic theories that the Finslerian description of dynamics

. . ) ) where

reveals its major merits. Indeed, Finsler spaces naturally
arise when the invariance for reparametrization of time is ' defl (0G99 I
imposed on a standard variational problem, this “built-in” L xY= 5 gl —p + —p— —1
| : : ( Yhk 2 ax<  oox" ox!
invariance makes the use of Finsigeometrodynamicthe
best choice to cope with such theories. . . . L

Besides this, the range of applicability of the Finslerian®€ the generalized connections. The geodesic deviation
approach is wider than what the peculiarity of Hamiltonian&auations[5] only formally analogous to the Riemannian
cosmologies requires. It can, in fact, be used to analyze time2N€s; are given by
dependent systems, leading in a natural way to a geodesic 2
flow over an extended configuration manifold: As an ex- 6z +Kl (X x"HxIx"hZk=0 )

. . . A . 2 jhk ’ — Y
ample of this application we illustrate below the simple but s
paradigmatic case of the time-varying frequency harmonic
oscillator. However, it is quite straightforward to study gy- where §/ s is the so-called delta differentiation
roscopic Lagrangians, such as that associated with the re- _ .
stricted three-body problem in the rotating coordinate sys- oz dz .
—=——+yx'"Z (8

tem. 8s ds ‘N

The plan of the paper is as follows. In Sec. Il we give a
brief overview of Finsler geometry. In Sec. Ill we present the

88>0, VE#NX (4)

The geodesic equations, formally analogous to the Rie-
annian ones, written in terms of the conformal parameter
are

(6)

lation b X tical hani q and K}hk(x‘,x’i) is one of the various curvature tensors that
relation between Lagrangian analytical mechanics and geqs,, pe gefined in a Finsler manifold. Its expression contains

dheS|c fI()vas over Fmslgnandmat:ufolds. In Sec. IV we d'sclufﬁerms involving the derivatives with respect to the velocities
the applications mentioned above. In Sec. V. we concludg, 5qgition to the usual terms in the Riemann tensor. It is
with the presentation of forthcoming results and possible deaefined by

velopments.

’ .  def
IIl. FINSLER GEOMETRY Kipe(X',x") =

ary ars aG') ary. ary aG')
ax<  ax'T ax'X ax" ox't ax'n
In this section we briefly describe the main properties of LrAipEM_pripEm 9)
Finslerian-manifoldg5], which can be considered a gener- mk= jh mh jk

alization of Riemannian spaces because of the dependence 0{1

the line element on both the coordinatésand velocities " ¢

x''=dx'/dw, wherew is an arbitrary time parameter. The

def .
line element is defined as G'=37px X', (10
dst=A%(x',x'N)ydw?=g;;(x*,x"*)dx'dx], ool Fled Fled Fle
i == 9" Cjil WJFCkil W_ijl X
1 9PA%(XKx"%) (11
973 Tl @
Cins 5 291 (12)
Note that if A%(x*,x’¥)dw?=g;;(x)dx'dx, the manifold 2 xrk
reduces to a Riemannian one. The functibfx',x’') must .
satisfy the conditions: In the Riemannian cas; =g;;(x') and the curvature tensor
Kink reduces to the Riemann tensor.
AX kX' =KA (X, x'D), k>0, 2 As in Riemannian geometfg], we define astability ten-
sor
i.e., A(x',x'") is a positively homogeneous function of de- do
gree 1 inx'', H = Kjpx 1x ", (13
AXX')#0, V x''#0, (3)  As shown below, this tensor contains all the information

about the dynamical behavior of the system and in particular
and, moreover, if a sign definite metric is required, determines th@ossiblechaotic properties.
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I1l. DYNAMICS ON FINSLER MANIFOLD general and includes conservative systems, systems with a

The Finsler geometry is particularly suited to describe La_potennal depending on the time and/or on velocities, and

grangian systems for which it provides the tangential SpaCeven systems with a Lorentz signature in the kinetic part like

: ) . . ﬁwe ones coming from general relativityee, e.g., Sec. IV B
V/\\Il(tgi i,ir;] ?;r:s[s?hgd ttr;eb:r;ﬁgilg rr?; gae niyonl?smﬂgglras’gg:;:rznéegelow on Bianc?ﬂ IX cogsmological m(fgelsi:ro?n Eqgs.(14)
riving from the standard Lagrangiab(t=x°x%,dx¥/dt) nd(19), one obtains the homogeneous Lagrangian

(a=1,...n) via the correspondence T
, i A=—g5— 2 fo-x' ¥=U-x'°, (22)
i X' 10 ri dx X @
L—A=L X,W‘X , X :d_W
where
(i=0,...n; a=1,...n), (19
. . . . T_lz ra\2 _ 10\2 22
leading to a homogeneous function of first degree in the T24& A, (X" ) T=T(x"")". (22)
velocitiesx’'. Thus, for a dynamical system with degrees
of freedom, the corresponding Finsler space is an
(n+1)-dimensional manifold. Note that(x',dx") is invari- A. Deriving the Finsler metric
ant under a rescaling of thiéme parametew. In fact, if In order to derive the Finsler metrié or, equivalently,
w, andw, are two different parameters, then due to theyne |agrangiah. must be sign definite. If this is not the case,
property(2) it follows that one can make it so by adding a constant to the potential or a
dx dxi gauge function to the Lagrangidn
i - i .
A(x, dwis dw; A(x, dW2)dwz. (15 N dg(x)
L=L+— (23

The n+1 Euler-Lagrange equations for the homogeneous

Lagrangian are equivalent to tmeequations of motion and

an additional one involving the time derivative of the energy.
From Eq.(1) it follows that the line element is

since the equations of motion are the samelfandL'.
So, starting from a Lagrangian satisfying conditig@s-
(4), the covariant components of the Finsler metric are easily

i evaluated using the definitiofd),

ds=A|x, —|dw, (16)
dw 2
%T +U? —O—gZT > (24)
= — X 0"
so that if we make the conformal choice of time parameter Joo (x'9% (x5 <
w=s, then
. Xla 2 A
ds ~dx .= a —f_ | +a (25
[ i | = aa a a a 10
aw A(x, dw) 1 () X
andx'°=1/L. In fact, T “ X'
Joa ((X/O)2+U a, IO_fa —a, (XIO)ZA'
10 —l_dS_A i dXi =L i dx* 18 (26)
OO =g A g7 a8
' ' ' X/a XI,B
In order to study the dynamical behavior of a wide class Oap=| A X—,g—fa ag W_fﬁ : (27)
of n-dimensional systems, we specialize our analysis to the
systems described by the Lagrangians The determinant of the metrig, is
L=T-2, f (xX)x*—U(X), a=1,...n; i=0,...n, AN*+2
a 9= oz 1] .- (28)
(19 (x'7) P
wherex®=dx*/dt and The contravariant components are
1 10\2 2
- a2 X fa
T_E%" a,(x%)*, (20 gOO:( A3) 3A+2UX,O+X,02 a_} (29)
where a, are real constants and both the potential 011 T 2 A
=U(x") and_ the func.tionsﬁa:fa(x_') depend in general only gaa:X_3 — | == Ux'0| +(x' %) =5+2U }
on the spatial coordinates’ and timet=x°. Moreover, we A®la, \ X X
assume coordinates in which the kinetic-energy matrix is di- ox/0 27 T
agonal. In contrast to Sec. II, the summation convention is + Lg > £ /;X,'B(—,G—UX/O) . (30
not assumed here. The above class of Lagrangians is very a,A”° 7 | ag X
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0 XIO 0 0 fa 0 2 fi H 0\2 U aa+B 10 1+ f (X"l)z
a_ . ra ’ 10 _ & 10y e, e @ —(x' ’ X x'of — a
g Az 2x"“(A+Ux"")+x aaA+X X 2 o | o= a «” 50 A
(31 dA .,
+x’°x’“(—’ —2A,
ds '
10
X A fa f T 10N2y 7@
X aa aB X 2 fFa aﬂ a,B B.a
f, f 10y2 0
X —X,B+—BX,Q . (32 +(X ) 2 1 (f, 5—f )2_X_df0‘va
a, a,B 4aa B#a aﬁ «p Brex a, ds
10
Note that, in contrast to the Jacobi and Eisenhart metrics, the + a_a % fB,aaX’a’ (39

Finsler metric is not diagonal even for conservative systems.
With this metric the equations of motion are reduced to a
geodesic flow on a Finsler manifold. Since we are interested 40 _ Bx’o(x’ofa—x’“aa)+(x’°)2<%— 2A a)
in behavior along geodesics, in what follows we use the con- ds ’
formal time parametes so thatx''=dx'/ds and A=1. (x'9)3

A
B _
2 B;a aﬁ (fa,ﬁ fﬁ,a)! (39)

B. The stability tensor

The stability tensor defined by E¢13) and all the geo- He=(x'0)2 U'0“—3x’°x’“A2+Bx’“(%—E fﬁxlﬁ)
B

metrical quantities that are involved in the geodesic devia- a,
tion equation have been defined in order to study the dy-
namical behavior of a Lagrangian system. We define the 0 dA o X'
Ical Vi grang! ystem. ! +x'Ox" d’ —2A |+ — > (fﬁ,Oax’B)
expressions S ay | B

def 1 dL du 1 df df
- e Bl B~ B
A=-2ds (33 ds | 2a, % X ( ds ds )
X/Ox/a
- = (fop—faa)
def dA 1 > o (Fap—fpa
B= gg +X °A2 (34) da B 8p
A x'0 1 df
10y @ B 10__ B
+Xx"°X (zﬁ‘, _aﬁ U pX 5 fgo > ds

and notation

1
— ry
Q Q 2Q "z (e ] 0
def 9 def @ def ¢
i Q= ok UlevEw e (39 U
He = (x'%)2 =2 4 Bx ¢(x'Of ,— x'Pay) +x'Ox' @
B a, B A
def (Q,a)2 def Q,aa dAr’B (X’O)zx’a Ar’a
(VQP=2 —3—. AQ=2 J=. (39 X|Tgs s T o, (Tasfed
x'0 1 /df df
- ry__ a,p B.a
o ;fy,aﬁx 2( Jo + e ) (41)

The components of the stability tensor defined by &)

are _ _
Because the antisymmetry propeﬁynkz - K}kh of the cur-

vature tensor, the determinant d¢f{j vanishes and

2T
H%=—3(x'%)?A?+Bx’° 1+W—Z, fX' | +(x'%)? Hix'1=0, (42)
dA o Aa as expected, so that'/ is an eigenvector oH'; with an
X[ =28, +(x'9)2>, =2 |x'0U S exp : €9 M :
ds ‘ a @ ’ eigenvalue zero. The trace=H',) of the stability tensor is
0 one of the synthetic indicators of instabilit,4] involved in
X 1df, 1 (37) the geodesic deviation equation for the norm of the pertur-

——f,0-5—=—+3 f, X7
2 @0 2ds 2 27 e bation and it is useful when the dynamical system under
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consideration has many degrees of freedom. As in Riemann- df

ian geometry, the trace is thRicci curvaturealong the geo- Haa=X'OU,aa+E fﬁ,aaxlﬁ+ a,B- d(;a
desic flow. Indeed, A
x'° (fap—fp.a)°
def = 3 A (49)
s A i Ajak 4 jFa ag
, _ . . 0 '8 X' du,
(see, e.g.[5(@)], p. 13) and ifa'=x'', then Ric@')=H', Hoa=X""U 0ot X fpoaX ~8, 370 B~ 5
[3]. Its formula is A
1 df df
10\2 _ 2 +—3 X’B(_a’ﬁ_ B,a)
R S U P SON oy 20 2, X" ds ~ ds
I 4 a pBFa aa’aﬁ 1o 2
X (fa,ﬁ_fﬁ,a)
1 df,, T2 (50
X0 X A*E,—x"0D) = ds - (44) pra B

H,z=%x"U 4+ > f x’7—5<—dfa"8+—df3’a) (51)
The other meaningful geometrical stability indicators are  *# ap L Tyap 2\ ds ds |’
the eigenvalues\ ) of the stability tensor, whereA
=0,1,...n label different eigenvectors. As in Riemannian
geometry, each eigenvalue is the sectional curvature of the
two-surface determined by the tangent to the flow and the The instability properties of a dynamical system are de-

normalized eigenvectoX|,, of H'; associated with (. In ~ Scribed by the geodesic deviation equatigi In analogy
fact, with the Lyapunov exponer(see, e.g.[12]), we define an

instability exponent given by

C. Discussion

K(z)(x,iaxi(A)):Kjihkxljx/hxi(A)Xl((A):gilHlkXI(A)Xt(A) ) |11 z(s)
5|= lim lim g In Z(_O) , (52)

:A(A) . (45) s—» z(0)—0

The eigenvalue corresponding to the eigenvector along thwherez(s)=(|z(s)[|= Vg7 is the norm of the perturba-

geodesic flow is zera =0, while the others can be ex- tion with respect to the Finsler metric. The exponénis a
pressed in the form measure of the asymptotic growth rate of the perturbation of

a given geodesic. An alternative approach is to calculate
(x'0)2 (f. o—f,.)2 instability exponer_wts, one _associated with each component. of
Ny=X'"B+——— > M+X’OU<V)’ the perturbatiorz' in a basis chosen normal to the geodesic
an g7 pFa aq.ap flow, since the tangential component increases almost lin-
(46)  early[see Eq(42)] with the times. If there is an exponential
divergence of nearby geodesics, at least one of these compo-
whereo,) are the eigenvalues of a matrX‘;, whose ele- nents exhibits a positive instability exponent.

ments are When the system has many degrees of freedeni, one
approach is to analyze an approximate version of the geode-
1 1 /(df df sic deviation equation
a 10 ry_ . a,B B.a
D a, U apX +zy fy.apX 2 ( ds * ds ” dzZ+ Hi. . s
(47) a€ " h T (53

The matrixD is equivalent to the Hessian matrix of the jnyolving the trace of the stability tensg8,4] and the ordi-
potential, involved in the tangent dynamics. In the conservapary derivative of the norra of the perturbation. When the
tive case, with a standard kinetic form, since the LagrangiaRysiem has a few degrees of freedom, it is necessary to study
does not depend on time, =1 andf,=0, D is just the  {he full system of equations in whicl is expressed in a

H%SSi‘?” matrix of the potentidl (x“), apart from a factor particylar basis, since the averaging procedure implied by
x'". Finally, we list the covariant components of the stability £ (53) can mask the sources of instability.

tensor in a Finsler spadg;;=Hj;; [5],
IV. APPLICATIONS AND EXAMPLES

2
Hoo= 2 fa00¢ “+ (x70)2 B+ 7o 2 U p(x'®)? In this section we show some paradigmatic examples to
“ “p which we apply the Finsler geometrical description. In the
X" df,q T (fap=fp.a) first example we discuss the instability behavior of a reso-
—2 X0 ¥+ 5%'0 2 Z Q. nant oscillator whose features are well known, so that it is
“ possible to compare the results of our method with those
(48) obtained by analytical approximations of the tangent dynam-
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ics. Although this is a very simple example, nevertheless, itshe curvatures, as it has been argued before, but is generally
purpose is to show how we can get insights into the sourcesaused by a parametric resonance due to the rapid fluctua-
of instability (and possibly of chagsn the geometric frame- tions of positive curvatures.
work. In the last part of this section we give a geometrical For the system we are discussing, the Finsler manifold is
description of the dynamics of the Bianchi IX cosmologicala two-dimensional manifold whose metric is derived from
models and, finally, of the restricted three-body problem. Wehe homogeneous Lagrangian
show that in both cases the Finsler geometry is particularly .
suited to the description of the dynamical properties and al- A= (x') —U(xHt’ (57)
lows one to attach an intrinsic meaning to the results. 2t’ A

Let us now compare the thoroughly studied Jacobi metric
with the Finsler metric in the case of conservative systemd he covariant components of the metric are

with n degrees of freedom. At variance with the Jacobi met-

"4
ric in which the conformal factor is the kinetic energy, in the gnzg % +U2,
Finsler metric it is given by the Lagrangian. As it has been 4 (t')
shown in[3,4], the evolution of(the norm of a perturbation .
to a geodesic in the Jacobi metric, for a system witHe- g :§ x) _
grees of freedom, is governed in a first approximatishich X2 (1?2 T
becomes better and better msncreasesby the Ricci cur-
vaturealong the flow given by G — (x')® 59
. (VU)Z tx (t/)3 .
Hi=owz | AV — T (n—2) Because we are dealing with a two-dimensional manifold,
the geodesic deviation equation reduces to
X o 2+W U (54 d?z
2 \as) W] ) T2 =0, (598
whereW=E—U is the kinetic energyE andU being the o2z
an

total and the potential energies, respectiyeAnalogously, —— +\z, =0, (59b)
the synthetic indicator of stability for a Finsler geodesic is ds’

i
the trace o' where the sectional curvatukeof the two-dimensional sur-

2 face determined by the direction of the geodesic flow and by
) , (55) a normal vector is now the only nonvanishing eigenvalue of

5 du ,(dU
tr He=t' AU+nt’—Sz+nt’ - i '
d the stability tensor and has the expression

ds

wheret’=1/L is the inverse of the Lagrangian. The differ- = . | e ()P
ences between the traceldf and the trace of ; consist in A=BUA (1)U o= U o+ (X7 + 2 U
the absence of the gradient and, more relevant, in the pres- 3 3
ence of the Lagrangian instead of the kinetic energy. Owing 2 N2 N2y 2 N2 ey 2 a2
to the gauge freedom in the definition of a Lagrangian, which * 2 U)X (1)U, SEX) 7= )+ 4 )7V,
allows one to make it always sign definitee., never van- 3
ishing), the Finsler metric is well suited in the case of a few +3(1)"X'U U (60)
degrees of freedom dynam!(_:al systems and even more Wh?ﬂwe possible instability behavior of the system is described
the system is near integrability, as in both cases the possibil- . L .
) N : L ; L y the second of equation$9), giving the evolution of a
ity that the kinetic energy vanishes giving a singularity in the . :

perturbation normal to the geodesic flow.

conformal factor of the Jacobi metric is not negligible; this . .
) e : . Let us now consider the expression for the angular fre-
can be avoided working in a Finsler manifold.
quencyw(t) [13],

A. Resonant oscillator and numerical results w?(t)= w§[1+ h cosyt], (61

_ As_a first application, we _study a one-dimensional system hereh<1 and
with time-dependent potential

=2wgte€, €e<wg. 62
U(x,t) =2 2(t)x2. (56) YT e@om e €=wo 62
o _ _ _ In this case it is possible to obtain an analytic approximate
Though this is a fairly simple example whose behavior carexpression for the instability exponegtfrom the tangent
be determined with high accuracy by analytical approxima-dynamics equation
ho 2 1/2
(—0) —52} . (63)

mechanism that governs the exponential instability. As it has 1
been also found in other “realistic” cases of interest X=5
[4,5b),10,14—186, in the corresponding geometric picture of

dynamics instability does not originate from the negativity of From this it follows that parametric resonance occurs when

tions [13], nevertheless, it allows us to understand the
2
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FIG. 1. t-time behavior of theyy instability exponentfrom the FIG. 2. s-time behavior ofs, exponentgfrom Finsler's geode-

tangent dynamigsfor the resonant oscillator in the casks0.1  sic deviation equatio59)] for the resonant oscillator in the cases
ande€=0.0,0.02,0.1,0.4. Units are chosen in order to haye- 1. h=0.1 ande=0.0,0.02,0.1,0.4. Units are the same as in Fig. 1.

lhwo|>2¢], (64) M(s)=A[1+H cogTs)], (65)

when y is real and positive.

We apply the geometrical method of Finsler spaces to thi
very simple system and perform a numerical integration o
the geodesic equations and of E§9b). In order to have a
positive-definite Lagrangian along the trajectory, it is neces- —
sary to add to the potential a constant whose magnitude de- =2\ E, (66)
pends on the integration time, which in turn should be long _
enough to get the asymptotic convergence of the instabilityith |E|<H-N2=H/2. For the cases discussed abdve
exponent. As a check of the integration of the geodesic equa=h=0.1, so|E|<0.05 and it follows that the exponential
tions, we also numerically integrate in parallel the tangentivergence occurs when
dynamics equation and calculate the numerigakexponent,
obtaining results in excellent quantitative agreement with Eq. IN—E<T<2\+E. (67)
(63). The time behavior ofy exponents, for different values
of h ande with wg=1, is shown in Fig. 1. In Fig. 2 we show
the behavior of the numerical, exponents defined in Eq.
(52) as functions of the tims, for the same cases of Fig. 1.
Both the positive and zero values 8f are in good qualita-
tive and quantitative agreement with teestimate given by 0.310 35<f<0.326 27. (68)

Eq. (63). In Fig. 3 we show the rate of growth of the pertur-

bation z(s)/z, for an unstableorbit with h=0.1 ande=0.0  In Fig. 4 we have shown the spectru@(f ) of A(s) in four
[Fig. 3(@)] and for astableorbit with h=0.1 ande=0.1[Fig. cases withh=0.1 ande=0.0,0.02,0.1,0.4. The “resonant
3(b)]. In the first case the exponential behavior is clear, whildband” for which relation(68) is fulfilled is also indicated by

in the second the perturbation oscillates aromgd two vertical lines at 0.310 35 and 0.326 27. From this figure

In order to test the reliability of the approach, we recon-it is clear that an unstable orbit occurs when the spectrum of
sider here the geometrical interpretation of the mechanismy(s) shows a maximum in the resonant band.
which generates an exponential divergence of nearby orbits, Summarizing, from the integration of the geodesic devia-
and compare it with its well-known dynamical interpretation. tion we conclude that the geometrical description gives re-
In all the cases shown above the curvathirgiven by Eq.  Sults in perfect agreement with the tangent dynamics, so
(60) is a positive oscillating function with mean valde these results are an intrinsic property of the system and do
equal to 1 and amplitude equal kb=h. Equation(59b) is a ot depend on the time gauge chosen; the unstable behavior
Hill equation[17] in which X is a positive time-dependent is caused byarametric resonancand not by negative val-
angular frequency, so it can lead to an exponentially diverues of the curvaturg; and from Fig. 4 it is clear that insta-
gent solution if the condition for parametric resonance ighility is present when the frequency bfis twice the average
satisfied. In fact, writing value\(s), thus satisfying the resonance condition.

in which I" is the angular frequency of(s), and remember-
g the resonance condition equati#), an unstable orbit
s characterized by

Settingf =T"/27, the condition on the frequendyfor para-
metric resonance is
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FIG. 4. Spectrum of curvaturk against frequency in several
cases. In the figure the lower and the upper limits given by the
resonance conditiof68) have been indicated. The spectra with a
maximum in the resonant band correspond to the unstable orbits of
Figs. 1 and 2. Units are the same as in Fig. 1.

L | tive dynamic behavior of relativistic systems, in which the
choice ofthe timeis highly arbitrary.

So the wide applicability of the Finsler geometrodynam-
ics is strikingly evident in the case of the Bianchi IX models,
for which the vanishing Hamiltonian {&7]

2 2 2
:(,3;,7) +(,8_2,T) ‘(aéT) +U(a,B.,B.)=0, (69

z(s)/z,

05 T

H

oL | | | where

] U=3e**{3e 8F+—%e 2P+ cosh2v3B_)

0 20 40 60 80 100
(b) s +4e*+[cosi4v3p_)—1]}, (70)

FIG. 3. Evolution of a perturbation compared with its initial B+ 8-, @nda are functions of the scale factoes b, and
value as a function of the affine parameter correspondingita ¢ Of the mixmaster universe, the derivatives means differen-
=0.1 ande=0.0 (unstable orbjtand(b) h=0.1 ande=0.1 (stable  tiation with respect tor (dr=dt/abc, t is the proper timg

orbit). Units are the same as in Fig. 1. andU is the potential of the system. The constrditi 0 is
a consequence of the covariance of the general relativity
B. Bianchi IX cosmological models whose field equations are
The controversial outcomes on the possibly chaotic nature d2a
of Bianchi IX dynamics have been subject of debate in the —=U,,
past two decades. The source of these discrepancies relies on dr '
the choice of the time variable adopted. As it is difficult to 5
establish ara priori best variable for thigand a similay d“B. ——U
problem, we argue that the use of Finsler geometrization of dr? B
dynamics is the most appropriate framework in which a more
intrinsic description can be worked out. Indeed, as it has d*B_
been already recalled in the introduction and as it is clearly a2 —Up.. (71)

stated in thefew) textbooks on the topi¢see[5a]), one of

the main features of the Finsler spaces is related to the réNote that for this system the kinetic part is not positive defi-
quirement of invariance under rescaling of the time paramsite and the related singularities have been the main source
eter. This property makes favorable the Finslerian setting imf criticism against the use of Jacobi geometrizafi®h The

the discussion of an intrinsic characterization of the qualitapresent approach overcomes all these troubles.
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We can construct the homogeneous Lagrangian L=2U—c, (79
[10,5b),16]
L from which, remembering Ed74), it follows that
A=5 (a'?= 2= B2~ W(e, . B)7',  (72) 11
"SI 20-¢ (80)
where
The value of constant is determined in order to have
W(a,B+.,8-)=—U(a,By.B-)*cC, (73 7'>0 so that the trace of the stability tens@f7) never
diverges.

in which the gauge is fixed by the choice of tfreegative

constantc, added in order to have a positive Lagrangian, so, " PI99F © COMPRIE 1he PRolet METe T e T8R00
that 7' >0. Note that ' Y

Jacobi metric for this dynamical systdi$,8,9—-10,%)]
. dT_ 1 3 1 24 o

T ds Cdx L (74) trH :i A*U-I—ﬂ 1
A XI, E J 2']’2 T

where where

du\? d?u

2 2 2
T: (B+,T) + (B*,T) (a,T)

2 2 2
_ (B+,T) (B*,T) + (a,‘r) —W(oz,,8+ ,ﬁ,)>0- (75) 2 2 2 . (82)

2 2 2

E:

We evaluate the covariant and the contravariant metricln contrast to Eq(77), there is now also the term
arriving at the expressions for the geodesic equations, written

in terms of the affine parameter (V*U)2=( Ju )2+(£ 2_ ﬁ)z (83)
By aB_ da
4 ! ﬂ,t '’
Bi=— “ﬁ 72+ - 7, It is clear why the Jacobi metric cannot work properly: the
- trace diverges when the “kinetic energy(or the potential
U a U) vanishes and this happens infinitely many tinf@sd not
a'= py T2+ o 7, only on the boundary of the region of motjogoing towards

the singularity. This does not occur in the Finsler manifold

du introduced above.

P=—2s2__ (76) We can better understand this by considering the line el-
ds ement of the Jacobi and Finsler metrics
These equations, when rewritten in terms of the timee- ds,= —v2Udr, (84)
duce to Egs(71). In addition to Eqs(71), we have to con-
sider the constraint{=0 [Eq. (69)]. dse=L£dr=(2U—c)dr. (85)
For the geodesic deviation equation, we calculate the
trace of the stability tensor Thus, whileds;=0 if 7=0 (and this cannot be avoided by

42 qu\2 adding a constaptthis does not happen fats: because in
trHF=trH‘j=r’2A*U—3T’ U +3T,2(_U) (7 this case t.he conformal factor is the Lagrangian of the sys-
ds’ ds tem, to which we can add a gauge function without changing
the equations of motion.
where Finally, we also make a brief comment on the use of the
2 5 2 scalar curvature in order to test the instability properties of
U o9°U 97U h desic fi it is cl f .
A*U= —5+ —5— —. (78)  the geodesic flow. As it is clear from previous worlsze,
ipL Bz da e.g.,[3,4,10,%b)]), the average scalar curvature often has
) . nothing to do with the instability properties of dynamics,
In the expressior(77) for the trace of the stability tensor except when it is constant and negative. Numerical simula-
there is a positive term and two terms whose sign is Nofions have been performed in order to estimate averages and
definite. This seems to suggest that, also in this particulafi,ctyations of geometrical quantities related to the Finslerian
dynamical system, the origin of the dynamical instability IS transcription of Bianchi IX dynamics and to compare them

not (or not only related to the negativity ofsome curva-  jth the qualitative behavior of its solutions. These results
ture, but rather to the fluctuations of the geometric quantitiegi| e presented elsewhefa6].

(see, e.9.[3,4,10,5%b)]). If this is the case, nothing can be
said about the relationship between the instability time scale
of trajectories and relaxation properties of the system.

Now use the constrair{69) and Eq.(73) for the potential
W to reexpress the Lagrangiafi defined by Eq.(75) in One of the most important applications of the Finsler ge-
terms of ometry in the description of the chaotic properties of the

C. Systems with a potential linearly depending on velocities:
The restricted three-body problem
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Lagrangian systems is in the case in which the potential de-
pends on both coordinates and velocities, because for these
systems the Jacobi and Eisenhart metrics cannot be appliegherew(,) are the eigenvalues of the Hessian matrix of the
As an illustrative example we show how the restricted threepotential. The trace of the stability tensor is

body problem can be described in the Finsler geometrical
approach. In this case, there are two degrees of freedom and
an effective potential given byin the rotating coordinate

Nay=Bt +(t")2+(t)2uy, a=12, (92)

_ dA
HY=t/AU* +2t"| =+ t'A% |+ 2172, (93

system; se¢l8], p. 242
Ueff: U(X,y)_X-y‘Fy;(,

1 - n
U(xy)==5 (x*+y?)— o (86)

whereu is the smallest mag48,19 and

p1=VOX+w)2+y?%  pa=(x+u—1)2+y% (87

The Lagrangian is given by
1 .. . .
L= 5 (E+y3)+(xy=yX) —U(xy), (88)
from which one obtains the homogeneous Lagrangian

1
A= o7 X2y )+ (xy' —yx) —U*(xy)t', - (89)

where U* (x,y) is the potentialU with the addition of an

while the covariant components are given by
T 1
Hn=2w (B+t)+ 7 [U* jx(X")2+U* yy(y')?
+2U* (X'y'],
Hpo=B+t' +t'U* ,,,

o *

Hio=— 1 (B+1)—

,a

ds '’

Hyy=t"U* .. (99

In this way the dynamics is reduced to a geodesic flow on a
Finsler manifold. The numerical results relevant to the cha-
otic nature of this system are presented elsewhEsg

V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed a formalism suited to

arbitrary gauge function that gives a positive-definite La-extending the geometrical approach to the description of
grangian. Expressions for the covariant components of thehaos in a class of manifolds larger than the Riemannian one

metric tensor follow from Eqs(24)—(27),

3Tz, 2T , ,
gtt:t/_4+u +,[,_3(_X y+y'x),
X’ 2 A
Oxx= t_/_y +t_/-
’ 2
y A
gyy: t—,+X +t—,,
T . X' X’
Oix= — tr_2+U t_’_y 2N
T y’ y'
Oy=—|pztV" F*X)‘m'
X/ y!
ng: t—,—y t—,+X s (90)

where T=(x'2+y'?)/2. Evaluating expression§33) and
(34) leads to

dU* ! ! t, * *
A= s +xx'+yy _E(U xy—U* (x),
dA Va2
B:E‘Ft A“, (91

so that the eigenvalues of E@L6) evaluate to

and as a consequence for more general dynamical systems.
In this wider setting we have evaluated the quantities in-
volved in the geodesic deviation equation, which is the natu-
ral tool for the study of the stability properties of the geode-
sic flow. The greater generality of Finsler geometry with
respect to the Riemannian one manifests itself in allowing
the description of a wider class of Lagrangian systems, in-
cluding those with an indefinite kinetic structure, as those
coming from the theory of general relativity. For such a class
of dynamical systems the geometrical description is particu-
larly helpful because it provides a natural way to introduce
guantities with an intrinsic meaning that are well suited to
describing the chaotic or regular properties of the motions of
the system, i.e., not depending on the choice of coordinates
adopted.

The need and the importance of a gauge-independent pic-
ture is indispensable in the case of the Bianchi IX cosmo-
logical models, for which many authojg,9] have explicitly
attributed the origin of the controversial results on the nature
of their dynamics to the time-gauge-dependent methods and
criteria adopted. The results of our studies on the topic in the
framework of the Finsler geometry will appear elsewhere
[16].

The wider applicability of Finsler geometry even in clas-
sical mechanics also relies on the nature of the conformal
factor, which is nothing but a Lagrangian of the dynamical
system, and this allows one to overcome the main shortcom-
ing of the Jacobi metric for systems with a few degrees of
freedom or described by an indefinite kinetic structure. In-
deed, while the singularities of the Jacobi metric(on in-
side the boundary of the region of allowable motions cannot



6458 DI BARI, BOCCALETTI, CIPRIANI, AND PUCACCO 55

be avoided, the gauge freedom allows one to add to the Lasimple and well understood dynamical system whose chaotic
grangian a total time derivativdG/dt, which cancels any behavior is due to parametric resonance. In a series of forth-
possible singularity, leaving unchanged the equations of moeoming paper§14—14, we plan to show that the mechanism
tion for the system. This further advantage of the Finslerresponsible for the onset of chaos is usually very subtle, even
approach is important since the chance of a vanishing kinetifor systems with a fewtwo or thre@ degrees of freedom,
energy is not negligible, and this is clearly the case for clasand is always related to the properties of the fluctuating cur-
sical dynamical systems with a few degrees of freedom agatures around their average positive values, only marginally
well as for relativistic dynamical systems, whose kinetic party the frequency of occurrence of negative values, and never
is indefinite. _ . to an average negative value. When the number of degrees of
Finally, we remark that the analysis presented here IS geeqom s small, the analysis gets increasingly more in-
generalization of the geometrical approach to dynamics PUolved as the number increases, and only when it becomes
sued in previous workg3,4], whose goal was the attempt to very large can some simplifyiling assumptions be made

find a relationship between the occurrence of chaotic dynam-, L . . .
ics and the curvature properties of the underlying manifol$3’4’lo’5b)]’ ba.se.d on statistical consideratiossentially
on the central limit theoreim

We have shown how the analysis can be carried out for
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